

THE CHALLENGE

Embedded microprocessor based approaches are the life support system of all
major embedded systems. Software running on these microprocessors based
provide the ability to add new functionality and avoid the costs and risk of
developing dedicated hardware when software based solutions suffice.

When processors running the embedded software lack the processing speed to
support CPU intensive functions, engineers have to shift CPU intensive processes to
dedicated hardware function blocks.

Transforming software functions to hardware requires CPU intensive code blocks to
be written in hardware-specific languages. Software programmers are not skilled in
these languages, nor have the required level of understanding of hardware logic.

As a result, complex embedded system designs begin with a split of hardware and
software components at the outset of the project with a different team for each.
The hardware logic design generally lags software design. This affects both time-
to-market and cost constraints.

To provide faster time to market and lower hardware development costs, hardware
description languages continue to evolve towards higher level of descriptions, but
they are still a far cry from the increasingly higher levels of abstraction software
programmers want to work with in order to meet increasingly more demanding
software development schedules.

ELIMINATING THE HARDWARE – SOFTWARE SCHISM

There are no easy ways for software programmers to design both “hard” and “soft” components of an embedded system in common
software based high level programming languages - like Java or C, working in a standard software programming environment and
without requiring deep knowledge of hardware design issues e.g. hardware programming languages.

Our soft chips technology attempts to eliminate the hardware-software schism commonly encountered in the design cycle of embedded
systems. We also attempt to eliminate the need to learn hardware description languages. Patent pending technology takes software
programs written in C or Java and generates low foot print executables without requiring programmers to possess any significant
knowledge of embedded design.

We do this analyzing software to determine the type of acceleration most appropriate for a given price performance tradeoff. Our tools
then provide software-based alternatives, each with varying price/performance characteristics. For example, the software program can
be automatically split to run on parallel processors or - in the event commercially available processors are not sufficient - we can
suggest the best configuration of a custom processor and automatically generate one from pre-built processor blocks.

The Hardware-Software Schism

Integration, System Level Test/Debug

Synthesis Tools
Place and Route
ASIC Fabrication

Test and Debug
In RTL Simulation

Hardware Circuit
Logic Design

Existing Hardware
IP Core Libraries

Test and Debug
With RTOS

Custom Software
Development

Existing Software
IP Libraries

Software Group Hardware Group

System Specs

Building custom instructions from a pre-built set of instructions is significantly faster than designing code in hardware description
languages because the process is automated and at a level of abstraction that software programmers are comfortable with. Time to
market concerns and cost constraints increasingly favor the programmer friendly soft chips and the auto-generated custom processor
approach over more complex hardware logic design tools and languages.

IDENTIFYING AND AUTOMATING PARELLELISM

A software program is compiled to produce a sequence of fetch execute cycles that call processor instructions. The instruction set is
generally low level. High-level program instructions expand to 50-80 low-level processor instructions. A faster processor runs more
instructions per processor but there are limitations on clock speed based on the processor design, power requirements etc. The
performance of a hardware deployment is higher that running the software on microprocessors for a variety of reasons but one
contributing factor is the elimination of multiple fetch cycles and the associated read-write operations for each fetch.

While at first glance, it would seem that processors couldn’t be used for significant hardware acceleration, a deeper analysis indicates
that it depends on what needs to be accelerated. Consider the case of a program running 10 independent processes each of which
share the same CPU resource. Parallel processing – shifting each process to another processor, with coordination between the
processors - could provide a ten-fold increase in performance, in theory. This was and still is the basis for parallel processing in high
performance computing applications.

__
© ADVANCED CYBERNETICS GROUP, INC. 1992-2003. PROPRIETARY AND CONFIDENTIAL. DISCLOSURES DESCRIBED IN ONE OR MORE PATENTS.

http://www.advancedcybernetics.com/technology.htm

When general-purpose processors cannot provide
the performance requirements of CPU intensive
processes, many types of dedicated processors
have deployed to address specific applications.

For example, many types of specialized DSP
processors exist and are far more cost effective
than designing dedicated hardware logic. With the
decreasing price and increasing performance of
today’s general purpose and special purpose
processors it is becoming increasingly difficult to
justify hand crafted dedicated hardware logic.

Our soft chips approach attempts to build on the
power inherent in parallelism by run on multiple
processors, both general purpose or dedicated or
as a last resort, custom processors with custom
instructions generated from a sequence of base
processor instructions.

To address this need, ACG has developed a base
processor instruction set and tools to help analyze
the “best” sequence of instructions to combine into
a custom instruction for a given program segment
under analysis. Based on this analysis hardware
automation tools can now rapidly generate both
the custom processor and the custom instructions
to run in programmable logic devices.

Custom processors include extensions to existing
processors. For example, an ARM core licensee has
access to both the instruction set and the pre-built
components. With our tools, he can determine
what custom instructions need to be added to a
modified ARM processor core.

A. Component
Based OS blocks

Software Program
(In C or Java)

1. Performance Analysis

2. Need more
CPU or Speed?

No One Soft Chip

Yes

B. Thread/Function
Analysis engine 3. Split software by

Thread or by Function

7. Iterations

FunctionThread

C. Custom pre-built
Processor blocks

NoNo 6. Use Available
Processor Core?

4. Use Available
IP Core blocks?

5. New Instruction
Set, New Processor

Yes Yes

IP core block

Multiple Soft Chips - per thread or function

The software programmer, tasked with multiple options, each with different price and performance tradeoffs can now make
appropriate hardware deployment decisions within a software friendly programming environment. For each selection, the programmer
can run the program on the processors and determine the performance.

THREAD/FUNCTION PARALLELISM

A critic of software-only approaches will state that hardware designed logic has higher performance than software driven processes.
Not necessarily so. Consider the case of a high-speed robotic system running ten threads. If two threads use most of the CPU and are
slowing down the process, then moving them to hardware frees CPU resources.

If the two “heavy” threads constitute 40% each of CPU load then moving them to hardware frees the processor to run 5 times faster
(100/20), in theory. In reality it would be around 4 times faster – there is still operating system overheads that have not been
accelerated. That is pretty much the fastest SYSTEM level performance achievable,- even if the hardware blocks are now running 100
times faster. Dramatic hardware acceleration does not always result in equally dramatic system level performance gains.

The system performance is thus 2.5 - but at a significant reduced cost of both development and hardware cost. Using one or more
dedicated processors may improve the performance and still a lower cost than hardware development. Recall that the IP core costs for
3 general-purpose processors are small when compared to the amortized cost of dedicated hardware for small to mid scale volumes.
Economies of scale favor using available processor cores and as processors technology continues to improve, the price/performance
ratio continues to improve also.

Now consider moving the two threads, to two general-purpose processors identical to the main processor. The main processor is still
capable of running about 4 times faster but the two slave processors are slowing the system down – they cannot run any faster than
100/40 = 2.5 times faster than a fully loaded processor.

__
© ADVANCED CYBERNETICS GROUP, INC. 1992-2003. PROPRIETARY AND CONFIDENTIAL. DISCLOSURES DESCRIBED IN ONE OR MORE PATENTS.

CUSTOM INSTRUCTIONS FOR CUSTOM PROCESSORS

A critic of software-only approaches will state that dedicated hardware logic will always have higher performance than ANY processor.
Not necessarily so. A piece of dedicated hardware logic is not semantically different from creation a custom processor with one
instruction set. Both require and employ the same hardware building blocks: registers, ALU etc. So the basic ingredients are the same.
But custom instruction is being developed with processor base instructions that are at a higher level of abstraction than the more
general purpose - and more primitive - building blocks supplied by an EDA vendor.

An additional advantage of staying in the world of custom processors relates to hardware semaphores. When the IP core is separate
from the processor, then interactions between the processor and the IP core block need to take place over a system bus. This may or
may not be significant – if the bus is local to an SoC it may not matter as much as contentions on the main system bus. But in either
case, the contention can be avoided by integration of custom instructions with the processor.

After the software code that needs acceleration has been identified, analysis tools map the code to a sequence of gate logic circuits
based on the machine code sequence based on the code compiled for a target processor. Since some basic processor building blocks
are needed to build upon, ACG developed a base processor instruction set for the purposes of being able to generate higher level
custom instructions from them. We also developed a simulator to identify the base processor instructions most used and the custom
processor instructions needed (derived from those base instructions and other hardware building blocks).

The purpose of this work is to test an hypothesis: given a set of processor instructions and other common processor building blocks, a
custom processor specification may be generated swiftly through automated program analysis. We have tested this hypothesis on our
target processor instruction set. However the analysis and instruction generation engine is not generic. For example, the core engine is
applicable to MIPS, re-configurable core users, if they wished to build program specific custom processors with MIPS building blocks.

SOFT CHIPS DEVELOPMENT FRAMEWORK

Motivation: There are no easy ways for software programmers to design both “hard” and “soft” components of an embedded system in
common software based high level programming languages - like Java or C, working in a standard software programming environment
and without requiring deep knowledge of hardware design issues e.g. hardware programming languages.

Solution: Patent pending technology takes software programs written in C or Java and generates low foot print executables without
requiring programmers to possess any significant knowledge of embedded design.

Features and Benefits: Distinctive features and benefits of our automated conversion to soft chips include:

Soft Chips technology: analyses program output machine code and generates a small footprint C code created, with identified essential
system services fused with it. Benefits: Rapid embedded software development; Algorithms are validated in a standard programming
environment; lower resource overheads for device; No OS licensing; use low cost, low power 8/16 bit processors.

__
© ADVANCED CYBERNETICS GROUP, INC. 1992-2003. PROPRIETARY AND CONFIDENTIAL. DISCLOSURES DESCRIBED IN ONE OR MORE PATENTS.

Multiple Soft Chips: Further performance gains are achieved with extension to our soft chips technology. Should one CPU be
insufficient, we can analyze the software to determine if program threads are separable to be able to run on multiple processors. We
then generate soft chips - OS-less executables - for the threads, taking care to include thread synchronization mechanisms etc.

Software centric: Soft chips technology is thus a software centric approach to deploying software more cost effectively on one or more
processors to engender the highest possible performance at the lowest cost, while still staying in a software centric paradigm. The
technology is applicable to a wide variety of host processors, both general-purpose processors and custom processors.

Custom Processors: In the case of custom processors the soft chips development framework helps analyze the type of instruction sets
best needed to run the program thread most efficiently. It can also help generate the minimal set of macro instructions that the custom
processor would need to run this program. Based on this information, the hardware designer can now present to the customer
alternatives regarding custom processor design vs. using standard commercially available processor cores.

Custom Instructions: ACG supports internally developed hardware logic for a representative instruction set. These hardware logic
instructions may be combined with other instructions to create new macro instructions. Macro instructions compress the number of
fetch-execute cycles to one, dramatically increasing the performance. Selecting the type of instruction sets needed and the level of
granularity (e.g. combination of instructions) is driven by flexibility and performance trade-offs specific to the application.

Cost Effective Migration: Our Eclipse based framework supports deployment alternatives with easy migration from small footprint “soft”
chips running on one processor to multiple soft chips running on multiple processors - that may also include higher performance
custom processor packages. Benefits: Cost effective life cycle support for high performance embedded systems, working with one
standard "programmer-friendly" framework.

For more information, or a live demonstration of our system, please contact: fdacosta@advancedcybernetics.com

FAQ ON SOFT CHIPS TECHNOLOGY

Q 01: What does this technology do?
This technology enables rapid automated conversion from high level languages to highly compact encapsulations of code we call soft
chips. Soft chip technology removes the overhead of the OS and associated costs (CPU, Memory) resulting a compact low power self -
standing executable. Thread and function level analysis automatically generate multiple soft chips to run on a multiple processor
System-on-Chip. Further performance gains may be achieved with Custom Processor extension. Our Custom processor technology
automatically generates co-processor specifications to run a thread or function of the program. The processor - along with custom
instructions- is generated with a pre-built set of processor building blocks.

Q 02: How are Custom processors generated?
Programs are compiled for a special purpose virtual processor as the target processor. Output machine code is analyzed and a custom
processor created to run one thread in the program. Verilog is automatically generated for the processor. The program fetch-execute
flow and performance is verified on an off-the-shelf FPGA interfaced with the tool as part of an automated verification procedure. The
processor is generated with a pre-built set of processor building blocks. While ACG has developed a set of base instructions and tools to
generate custom processors, the core technology is applicable to re-configurable processor modules supplied by ARC, MIPS et al.

Q 03: High level languages to Verilog translators exist. Why Custom Processors?
Verilog compilers take a hardware centric approach: they produce the functional equivalent of a piece of software in a hardware circuit.
Many software features cannot be supported in this approach: multi-dimensional arrays, recursion, polymorphism, dynamic objects,
features related to object oriented programming e.g. invoking methods through interfaces. Conversion to direct hardware also has
higher gate counts because of loop unrolling. Conversely, we retain a software centric approach to code conversion: the fetch-execute
sequence is directly related to program flow: programs running in a development environment execute in the same manner on the
custom processors. We never leave the software paradigm: we create a "better" processor for higher performance.

Q 04: Verification is a bottleneck in all chip design. How do you address verification?
Verification in our world is verification of the behavior of the custom processor running the program thread. We retain the Fetch-
execute cycle paradigm central to software running on processors. We verify that program flow is the same for any soft chip in our
system – regardless of the type of processor it runs on. A custom processor is a subset from a family of pre-written and rigorously
tested components. The fetch-execute cycle of the program is also immediately tested through an interface from the development
environment to FPGA test boards. The behavior of fetch-execute cycle used to run the program on a general-purpose microprocessor is
compared with that of the fetch-execute cycle of the program running on the custom processor.

Q 05: Does one set of tools produce both soft chips and custom processors?
Yes. Our IBM Eclipse based IDE extensions support deployment alternatives with easy migration from license free small footprint "soft"
chips to higher performance, co-processor cores. Benefits: Cost effective lifecycle support within one programming environment,
supporting multiple programming languages but operating on one object code base, the compiler output.

__
© ADVANCED CYBERNETICS GROUP, INC. 1992-2003. PROPRIETARY AND CONFIDENTIAL. DISCLOSURES DESCRIBED IN ONE OR MORE PATENTS.

mailto:fdacosta@advancedcybernetics.com
http://www.arc.com/products/soc/microprocessors/
http://www.mips.com/content/Products/Cores/32-BitCores

RELATED READING

http://www.mips.com/content/Products/Cores/32-BitCores: ”The MIPS32™ M4K™ core was designed for multi-CPU SOCs, which are
becoming increasingly popular in next-generation consumer, networking and broadband applications. The M4K is a flexible and high-
performance, yet surprisingly small and low power core that offers the highest performance density of any 32-bit synthesizable core,
enabling designers to meet the high system throughput demands of multi-CPU SOCs while controlling silicon cost.”

http://www.itweek.co.uk/News/1131464 “MIPS also revealed a new 32-bit core designed to optimize silicon on chip (SOC) designs
implemented with multiple processor cores. The company's MK4 multiprocessing core is the first to allow developers to insert user-
defined instruction logic, which extends specific instructions for proprietary header-analysis tasks. ”

http://www.arc.com/products/soc/microprocessors “ARC offers a complete range of synthesizable microprocessor core solutions,
ranging from the powerful 32-bit ARC family of processors, to legacy 8-bit general-purpose and Intel 8086/80186 architectures. The
ARC processor can readily be tailored through easy-to-use, integrated, hardware and software tool chains to meet your stringent
requirements for computational performance, digital signal processing, I/O throughput, power consumption, silicon area and cost.”

http://www.eetimes.com/story/OEG20000321S0009 “In current system-on-chip (SoC) applications, chip designers are integrating
several processor cores onto a single piece of silicon. This has been seen as a very important advance in the technology, especially for
communications systems, where demands for speed and performance are ever increasing. Of course, the designs are never simple and
require the integration of several intellectual property (IP) components, millions of transistors and assorted peripherals for each
processor core. Ideally, the chip requires a system-level approach for modeling and verification to define the architecture of the SoC. It
also requires specification of the components, including types of processors, number of processors, required trade-offs between
hardware and software, type of bus and method for sharing memory and other peripherals.”

http://www.eetimes.com/story/OEG20010323S0071 “But while some laud the ability to build a customized processor, reconfigurable
processors remain a hard sell to the vast majority of embedded hardware engineers who are either unfamiliar with reconfigurable
designs or uncertain about abandoning the traditional processor development model. Foremost on their minds are questions about the
trade-offs of adding gates vs. code optimization and verification and test”

http://www.eedesign.com/silicon/OEG20030819S0029 ”Most concurrent programming problems can be attributed to a lack of proper
synchronization in the access of shared resources (e.g. CPU and bus cycles, memory, and various devices). The problems are
manifested in the form of data corruptions, race conditions, deadlocks, stalls, and starvation. The occurrence of these problems is often
unpredictable and hard to reproduce.”

http://www.eetimes.com/story/OEG20030912S0038 “A sea change is happening in the way software developers create and debug the
software for many complex systems-on-silicon, the software-rich chips where a large part of the system is implemented as software as
opposed to specialized silicon blocks. Traditionally, software development happened on a hardware surrogate for the chip-to-be; now,
more and more developers are transitioning to developing software on a software model of the chip-to-be. Such a model is known as a
virtual platform.”

http://www.eetimes.com/story/OEG20031121S0033 ” Now that whole systems can be put on a single piece of silicon, IC design is as
much a software design issue as it was a hardware design problem before. A typical system-on-chip (SoC) design has two or more
processors, memory, one or more dedicated subsystems specific to the application and a complex, sometimes hierarchical
communications system between them. As such, these chips contain multiprocessor real-time operating systems, complete with I/O
drivers, utilities and diagnostic subsystems, along with their specific software applications. The exploding complexity of software in
these new SoC designs has already resulted in the software design costs exceeding the hardware design costs for some of the more
complex designs. The problem now is how to manage that software cost. So where can improvements be made?”

http://www.eetimes.com/in_focus/embedded_systems/OEG20020531S0026
” It should come as no surprise that the software debugger is also affected by reconfigurabilty. Although supporting subtractive
changes is trivial, supporting multiple disparate processing cores is a challenge technologically (synchronizing independent processors)
and economically (a small number of developer seats use a specific combination of cores). For these reasons, one of the first-
generation multi-core debug architectures is based on the single-core debugger technology already available. To manage the activities
of multiple single-core debuggers, a middleware mechanism or mediator needs to be put in place. For each debugger, the mediator
creates the illusion that that debugger has total control over the processor it is attached to — something that was taken for granted
when single core debuggers were designed. The mediator manages three tasks: execution environment initialization, launching
debugger instances and defining and managing the debug topology — the start/stop relations between processing cores.”

http://www.commsdesign.com/design_center/3gwireless/design_corner/OEG20020531S0029 “When the design involves a
heterogeneous mix of different vendors' processors, such as ARM cores and DSP cores, the debug environment also must cope with
inherent differences, like bus structures and data flow characteristics. In such environments, more complex interactions are common
between the microcontroller and processor and the DSP.”

__
© ADVANCED CYBERNETICS GROUP, INC. 1992-2003. PROPRIETARY AND CONFIDENTIAL. DISCLOSURES DESCRIBED IN ONE OR MORE PATENTS.

http://www.mips.com/content/Products/Cores/32-BitCores
http://www.itweek.co.uk/News/1131464
http://www.arc.com/products/soc/microprocessors
http://www.eetimes.com/story/OEG20000321S0009
http://www.eetimes.com/story/OEG20010323S0071
http://www.eedesign.com/silicon/OEG20030819S0029
http://www.eetimes.com/story/OEG20030912S0038
http://www.eetimes.com/story/OEG20031121S0033
http://www.eetimes.com/in_focus/embedded_systems/OEG20020531S0026
http://www.commsdesign.com/design_center/3gwireless/design_corner/OEG20020531S0029

	THE CHALLENGE

